Cross cutting topic (5): Quality Change

A proxy approach to quality adjustment of a service industry

٠

٠

ullet

Rob Bucknall, Office for National Statistics

20 September 2022

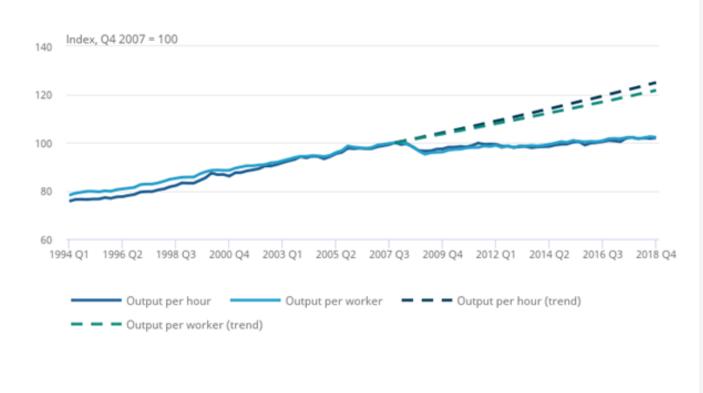
Contents

- Deflators
- Productivity within service sector
- Challenges in measuring service quality change
- Case Study: Architecture & Engineering (71.1)
- Conclusions

Deflators

- Allow for volume measures to be compared in real terms
 - Price changes removed from current price data series
- Accounting for quality change is major challenge
 - Standard techniques not always suitable or practical
 - Consequently deflators of goods and services impacted by rapid quality advancement often tend towards upward bias
- Key aim of ONS Deflator Strategy is to capture quality change more effectively in fast changing industries

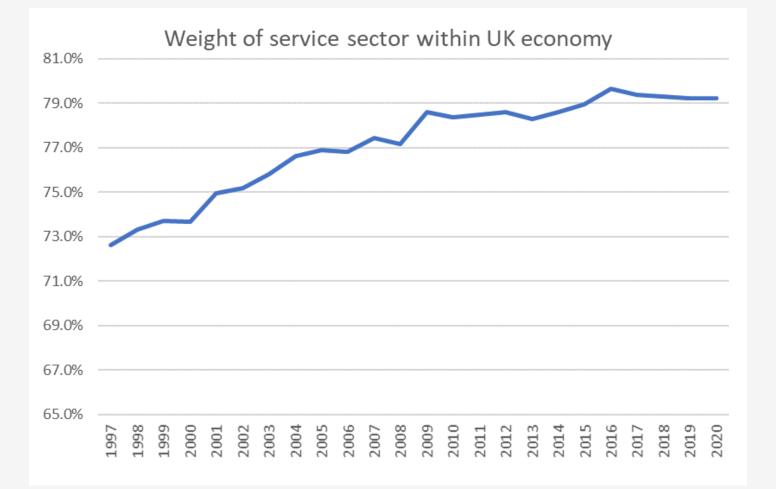
Productivity within service sector


- Low productivity growth in recent years for several service industries experiencing rapid technology change
- Expect rapid technology change to lead to increased productivity
- May reflect under-estimation of service productivity growth due to difficulties of adjusting for quality improvements

Productivity puzzle

Productivity, as measured by output per hour, was 18.3% beneath its pre-downturn trend

Output per hour and output per worker, seasonally adjusted, UK, Quarter 1 (Jan to March) 1994 to Quarter 4 (Oct to Dec) 2018



Source: Office for National Statistics

Office for National Statistics

Source: ONS. (2019). *Labour productivity, UK: October to December 2018*

Growing service sector

Office for National Statistics

Source: ONS. (2022). *GDP output* approach – low-level aggregates

Challenges in measuring service quality change

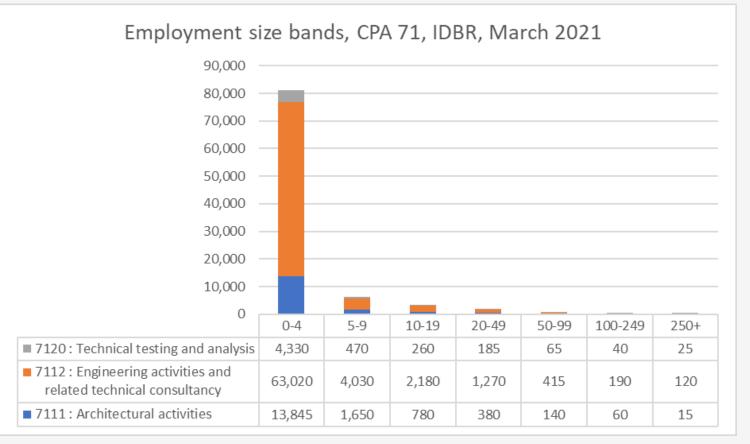
- Adjusting for quality change of services is challenging due to the oftenheterogeneous nature of products
 - Tailored to client's needs
 - Unique
 - Change from period to period
- Quality of a service is a function of its intangible characteristics
 - Reliability
 - Effectiveness
 - Customer satisfaction
- Quality change can be subjective depending on perspective of individual
- Therefore, most standard quality adjustment methods not practical for application

Pricing methods

- Ideally the pricing method would inherently account for quality changes or productivity
- Many of ONS's SPPIs use time-based methods
 - Survey asks how long workers of different grades/positions work over given quarter and their chargeout rate
 - Does not inherently account for quality changes
- Model pricing would be a more suitable method for tracking price movements of unique products, though involves significant burden on respondent
 - Respondent constructs a model service that reflects its business
 - Respondent asked to estimate price of this service, had it been provided in each reporting period
 - Should reflect any changes to labour costs, which will reflect changes to productivity
 - Model must be updated to ensure it remains reflective of services provided

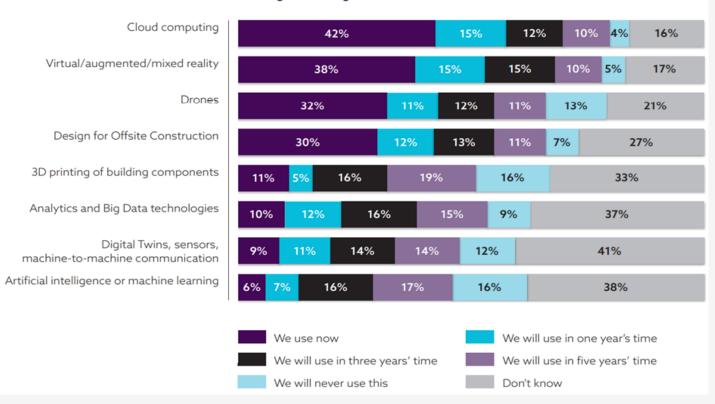
Case Study: Architecture & Engineering (71.1)

- Increasing use of emerging technologies over the last 10-20 years
- Expect to see the impact of quality improvements reflected in the deflators
- However, our existing deflators fail to recognise technological advancements and productivity revolution within the industry
- We aim to use insights from characteristics of the services to develop a method for incorporating quality change



Case study: Architecture & Engineering - sample

CPA 4-digit	Sample composition	Pricing and price collection method	Coverage
Architectural services (71.11)	39 items 34 suppliers	Time based Survey – stratified random sample	 Prices from following 6-digit CPAs: Landscape architectural services Building project architectural advisory services Project site master planning services
Engineering services and related technical consulting services (71.12)	72 items 58 suppliers	Time based Survey – stratified random sample	 Prices from following 6-digit CPAs: Engineering services for industrial/manufacturing projects Engineering advisory services Project management services for construction projects Geophysical services Engineering services for building projects


Case study: Architecture & engineering business size in CPA 71

Office for National Statistics

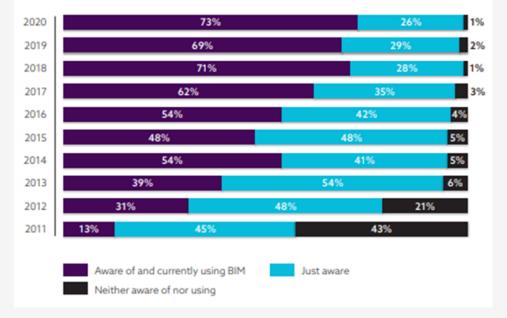
Source: ONS. (2021). *UK business: activity, size and location*

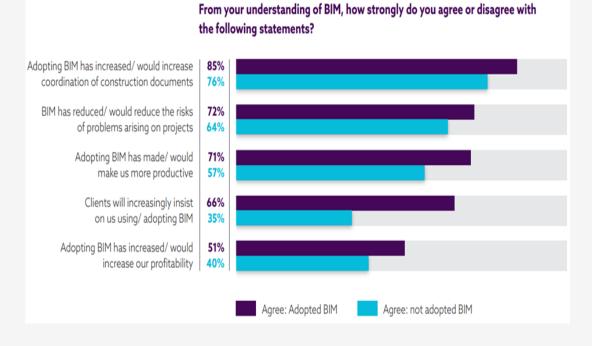
Case study: Architecture & engineering – quality change

Please tell us about your current and expected use of the following technologies

Office for National Statistics

Source: NBS. (2020). 10th National BIM Report


Case Study: Architecture & Engineering – 3D Building Information Modelling (BIM)


- BIM enables improved communication between parties working on project
 - Potential problems highlighted earlier, improving efficiency
- In 2011 UK government commenced programme encouraging use of BIM
- Since been rapid increase in use and awareness of BIM

Case study: Architecture & engineering – BIM take up and opinions

BIM adoption over time

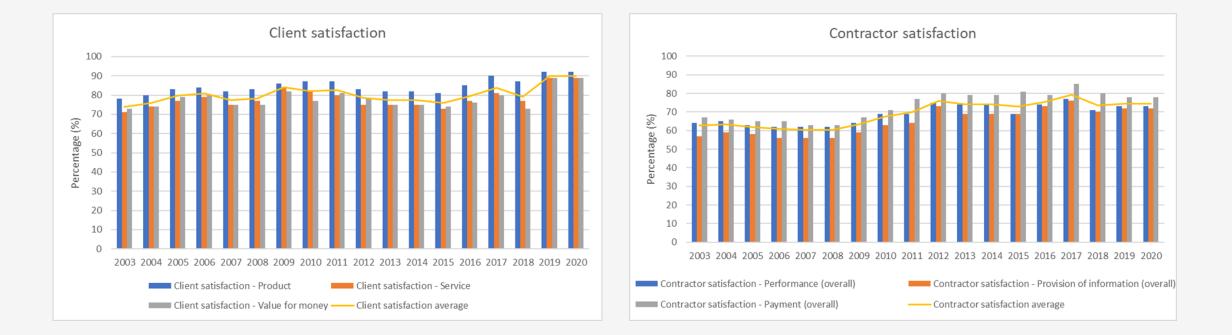
The majority of these statements would reflect increased quality of service as a result of using BIM

Office for National Statistics

Source: NBS. (2020). 10th National BIM Report

Case Study: Architecture & Engineering – quality adjustment options

- 1) Implement a price adjustment using relevant proxies that could indicate a measure of quality change in the service
- 2) Use a pricing method which allows for inclusion of changes in quality or productivity, such as model pricing.


Option 1 is the focus of this presentation.

- Key Performance Indicators (KPIs) for the Construction sector available from UK industry performance reports published by Glenigan
 - Glenigan is market leader in field of construction sales leads and marketing intelligence
 - KPIs capture the sector's performance and provide benchmark for comparison across years:
 - Satisfaction (client and contractor)
 - Profitability
 - Predictability

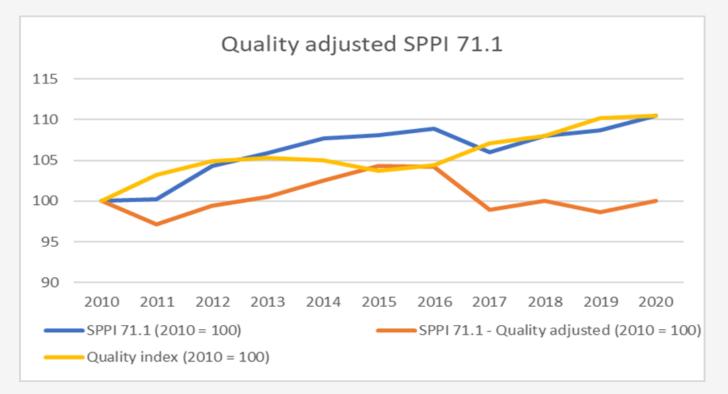
- Staff turnover
- Sickness absence
- Accident rates
- Energy usage

- Waste removal
- Water usage
- Commercial vehicle
 movements
- Satisfaction alone is a good indicator of quality as it is likely to be closely related to many other indicators of quality
 - This proxy for quality change is based on client and contractor satisfaction over time

Source: Glenigan. (2021). 2019/20 UK Industry Performance Report.

- The quality adjusted index was calculated as follows:
 - Step 1: Calculate a satisfaction indicator, an arithmetic mean of the client and satisfaction indicators

$$Satisfaction_{t} = \frac{Satisfaction_{client,t} + Satisfaction_{contractor,t}}{2}$$


• Step 2: Calculate a quality index, a 3-year rolling average of the satisfaction indicator to smooth out year-to-year volatility

Quality index_t = $\frac{\sum_{i=t-2}^{t} Satisfaction_i}{3}$

- Step 3: Re-reference the quality index and unadjusted SPPI to 2010=100
- Step 4: Calculate a quality adjusted index, the ratio of the unadjusted SPPI to the quality index multiplied by 100

Quality adjusted index_t = $\frac{Unadjusted index_t}{Quality index_t} * 100$

Office for National Statistics

- Unadjusted SPPI exhibits overall growth between 2010 and 2020, suggesting price increase
- Quality adjusted SPPI exhibits
 flatter trend
- By stripping out the quality improvements the price increases are offset
- Expect resultant volume measures to show more growth than those calculated with unadjusted SPPI
- Expect higher productivity growth over this period

Office for National Statistics

Conclusions

- Adjusting for quality change of services is challenging
 - Heterogeneous nature of services often prevents application of standard methods
- Difficulties measuring quality change in growing service sector with increased digitalisation likely to have contributed to underestimation of productivity growth
- Application of proxy approach on Architecture & Engineering led to plausible inflation rates which would lead to higher productivity estimates
- We would like to continue our research by:
 - Investigating additional sources which may be more suitable for developing quality indices
 - Considering the use of additional KPIs such as people and environmental indicators
 - Investigating the potential of using this methodology for quality adjusting other service industries